Adaptive Local-Global Relational Network for Facial Action Units Recognition and Facial Paralysis Estimation
Facial action units (AUs) refer to a unique set of facial muscle movements at certain facial locations defined by the Facial Action Coding System (FACS), which can be used for describing nearly any anatomically possible facial expression. Many existing facial action units (AUs) recognition approaches often enhance the AU representation by combining local features from multiple independent branches, each corresponding to a different AU, which usually neglect potential mutual assistance and exclusion relationship between AU branches or simply employ a pre-defined and fixed knowledge-graph as a prior. In addition, extracting features from pre-defined AU regions of regular shapes limits the representation ability. In this paper, we propose a novel Adaptive Local-Global Relational Network (ALGRNet) for facial AU recognition and apply it to facial paralysis estimation. ALGRNet mainly consists of three novel structures, i.e., an adaptive region learning module which learns the adaptive muscle regions based on the detected landmarks, a skip-BiLSTM module which models the latent mutual assistance and exclusion relationship among local AU features, and a feature fusion&refining module which explores the complementarity between local AUs and the whole face for the local AU refinement. In order to evaluate our proposed method, we migrated ALGRNet to a facial paralysis dataset which is collected and annotated by medical professionals. Experiments on the BP4D and DISFA AU datasets show that the proposed approach outperforms the state-of-the-art methods by a large margin. Additionally, we also demonstrated the effectiveness of the proposed ALGRNet in applications to facial paralysis estimation.
READ FULL TEXT