Additive Multi-Index Gaussian process modeling, with application to multi-physics surrogate modeling of the quark-gluon plasma

06/11/2023
by   Kevin Li, et al.
0

The Quark-Gluon Plasma (QGP) is a unique phase of nuclear matter, theorized to have filled the Universe shortly after the Big Bang. A critical challenge in studying the QGP is that, to reconcile experimental observables with theoretical parameters, one requires many simulation runs of a complex physics model over a high-dimensional parameter space. Each run is computationally very expensive, requiring thousands of CPU hours, thus limiting physicists to only several hundred runs. Given limited training data for high-dimensional prediction, existing surrogate models often yield poor predictions with high predictive uncertainties, leading to imprecise scientific findings. To address this, we propose a new Additive Multi-Index Gaussian process (AdMIn-GP) model, which leverages a flexible additive structure on low-dimensional embeddings of the parameter space. This is guided by prior scientific knowledge that the QGP is dominated by multiple distinct physical phenomena (i.e., multiphysics), each involving a small number of latent parameters. The AdMIn-GP models for such embedded structures within a flexible Bayesian nonparametric framework, which facilitates efficient model fitting via a carefully constructed variational inference approach with inducing points. We show the effectiveness of the AdMIn-GP via a suite of numerical experiments and our QGP application, where we demonstrate considerably improved surrogate modeling performance over existing models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset