Advanced discretization techniques for hyperelastic physics-augmented neural networks

06/16/2023
by   Marlon Franke, et al.
0

In the present work, advanced spatial and temporal discretization techniques are tailored to hyperelastic physics-augmented neural networks, i.e., neural network based constitutive models which fulfill all relevant mechanical conditions of hyperelasticity by construction. The framework takes into account the structure of neural network-based constitutive models, in particular, that their derivatives are more complex compared to analytical models. The proposed framework allows for convenient mixed Hu-Washizu like finite element formulations applicable to nearly incompressible material behavior. The key feature of this work is a tailored energy-momentum scheme for time discretization, which allows for energy and momentum preserving dynamical simulations. Both the mixed formulation and the energy-momentum discretization are applied in finite element analysis. For this, a hyperelastic physics-augmented neural network model is calibrated to data generated with an analytical potential. In all finite element simulations, the proposed discretization techniques show excellent performance. All of this demonstrates that, from a formal point of view, neural networks are essentially mathematical functions. As such, they can be applied in numerical methods as straightforwardly as analytical constitutive models. Nevertheless, their special structure suggests to tailor advanced discretization methods, to arrive at compact mathematical formulations and convenient implementations.

READ FULL TEXT

page 21

page 26

research
02/05/2023

Neural networks meet hyperelasticity: A guide to enforcing physics

In the present work, a hyperelastic constitutive model based on neural n...
research
05/28/2023

I-FENN for thermoelasticity based on physics-informed temporal convolutional network (PI-TCN)

We propose an integrated finite element neural network (I-FENN) framewor...
research
05/10/2022

Improved long time accuracy for projection methods for Navier-Stokes equations using EMAC formulation

We consider a pressure correction temporal discretization for the incomp...
research
07/07/2023

Parametrised polyconvex hyperelasticity with physics-augmented neural networks

In the present work, neural networks are applied to formulate parametris...
research
11/17/2022

Graph Neural Network-based Surrogate Models for Finite Element Analysis

Current simulation of metal forging processes use advanced finite elemen...
research
08/30/2023

Neural network-based multiscale modeling of finite strain magneto-elasticity with relaxed convexity criteria

We present a framework for the multiscale modeling of finite strain magn...
research
01/20/2022

Symplectic Momentum Neural Networks – Using Discrete Variational Mechanics as a prior in Deep Learning

With deep learning being gaining attention from the research community f...

Please sign up or login with your details

Forgot password? Click here to reset