AirLab: Autograd Image Registration Laboratory

by   Robin Sandkühler, et al.

Medical image registration is an active research topic and forms a basis for many medical image analysis tasks. Although image registration is a rather general concept specialized methods are usually required to target a specific registration problem. The development and implementation of such methods has been tough so far as the gradient of the objective has to be computed. Also, its evaluation has to be performed preferably on a GPU for larger images and for more complex transformation models and regularization terms. This hinders researchers from rapid prototyping and poses hurdles to reproduce research results. There is a clear need for an environment which hides this complexity to put the modeling and the experimental exploration of registration methods into the foreground. With the "Autograd Image Registration Laboratory" (AirLab), we introduce an open laboratory for image registration tasks, where the analytic gradients of the objective function are computed automatically and the device where the computations are performed, on a CPU or a GPU, is transparent. It is meant as a laboratory for researchers and developers enabling them to rapidly try out new ideas for registering images and to reproduce registration results which have already been published. AirLab is implemented in Python using PyTorch as tensor and optimization library and SimpleITK for basic image IO. Therefore, it profits from recent advances made by the machine learning community concerning optimization and deep neural network models. The present draft of this paper roughly outlines AirLab with first code snippets and performance analyses. A more exhaustive introduction will follow as a final version soon.


Introduction to Medical Image Registration with DeepReg, Between Old and New

This document outlines a tutorial to get started with medical image regi...

DeepReg: a deep learning toolkit for medical image registration

DeepReg ( is a community-supported...

Astroalign: A Python module for astronomical image registration

We present an algorithm implemented in the astroalign Python module for ...

The Impact of Machine Learning on 2D/3D Registration for Image-guided Interventions: A Systematic Review and Perspective

Image-based navigation is widely considered the next frontier of minimal...

Fast GPU 3D Diffeomorphic Image Registration

3D image registration is one of the most fundamental and computationally...

Accelerating B-spline Interpolation on GPUs: Application to Medical Image Registration

Background and Objective. B-spline interpolation (BSI) is a popular tech...

Multi-Objective Dual Simplex-Mesh Based Deformable Image Registration for 3D Medical Images – Proof of Concept

Reliably and physically accurately transferring information between imag...

Please sign up or login with your details

Forgot password? Click here to reset