Algorithms for the rational approximation of matrix-valued functions

03/13/2020
by   Ion Victor Gosea, et al.
0

A selection of algorithms for the rational approximation of matrix-valued functions are discussed, including variants of the interpolatory AAA method, the RKFIT method based on approximate least squares fitting, vector fitting, and a method based on low-rank approximation of a block Loewner matrix. A new method, called the block-AAA algorithm, based on a generalized barycentric formula with matrix-valued weights is proposed. All algorithms are compared in terms of obtained approximation accuracy and runtime on a set of problems from model order reduction and nonlinear eigenvalue problems, including examples with noisy data. It is found that interpolation-based methods are typically cheaper to run, but they may suffer in the presence of noise for which approximation-based methods perform better.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro