An Adaptive Algorithm for Finite Stochastic Partial Monitoring

06/27/2012
by   Gábor Bartók, et al.
0

We present a new anytime algorithm that achieves near-optimal regret for any instance of finite stochastic partial monitoring. In particular, the new algorithm achieves the minimax regret, within logarithmic factors, for both "easy" and "hard" problems. For easy problems, it additionally achieves logarithmic individual regret. Most importantly, the algorithm is adaptive in the sense that if the opponent strategy is in an "easy region" of the strategy space then the regret grows as if the problem was easy. As an implication, we show that under some reasonable additional assumptions, the algorithm enjoys an O(√(T)) regret in Dynamic Pricing, proven to be hard by Bartok et al. (2011).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset