An ALE residual distribution scheme for the unsteady Euler equations over triangular grids with local mesh adaptation

04/25/2022
by   Stefano Colombo, et al.
0

This work presents a novel interpolation-free mesh adaptation technique for the Euler equations within the arbitrary Lagrangian Eulerian framework. For the spatial discretization, we consider a residual distribution scheme, which provides a pretty simple way to achieve high order accuracy on unstructured grids. Thanks to a special interpretation of the mesh connectivity changes as a series of fictitious continuous deformations, we can enforce by construction the so-called geometric conservation law, which helps to avoid spurious oscillations while solving the governing equations over dynamic domains. This strategy preserves the numerical properties of the underlying, fixed-connectivity scheme, such as conservativeness and stability, as it avoids an explicit interpolation of the solution between different grids. The proposed approach is validated through the two-dimensional simulations of steady and unsteady flow problems over unstructured grids.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro