An Augmented Reality Platform for Introducing Reinforcement Learning to K-12 Students with Robots
Interactive reinforcement learning, where humans actively assist during an agent's learning process, has the promise to alleviate the sample complexity challenges of practical algorithms. However, the inner workings and state of the robot are typically hidden from the teacher when humans provide feedback. To create a common ground between the human and the learning robot, in this paper, we propose an Augmented Reality (AR) system that reveals the hidden state of the learning to the human users. This paper describes our system's design and implementation and concludes with a discussion on two directions for future work which we are pursuing: 1) use of our system in AI education activities at the K-12 level; and 2) development of a framework for an AR-based human-in-the-loop reinforcement learning, where the human teacher can see sensory and cognitive representations of the robot overlaid in the real world.
READ FULL TEXT