An Edge-powered Approach to Assisted Driving

08/21/2020
by   Francesco Malandrino, et al.
0

Automotive services for connected vehicles are one of the main fields of application for new-generation mobile networks as well as for the edge computing paradigm. In this paper, we investigate a system architecture that integrates the distributed vehicular network with the network edge, with the aim to optimize the vehicle travel times. We then present a queue-based system model that permits the optimization of the vehicle flows, and we show its applicability to two relevant services, namely, lane change/merge (representative of cooperative assisted driving) and navigation. Furthermore, we introduce an efficient algorithm called Bottleneck Hunting (BH), able to formulate high-quality flow policies in linear time. We assess the performance of the proposed system architecture and of BH through a comprehensive and realistic simulation framework, combining ns-3 and SUMO. The results, derived under real-world scenarios, show that our solution provides much shorter travel times than when decisions are made by individual vehicles.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset