An efficient and energy decaying discontinuous Galerkin method for Maxwell's equations for the Cole-Cole dispersive medium

08/23/2022
by   Jiangming Xie, et al.
0

In this work, we investigate the propagation of electromagnetic waves in the Cole-Cole dispersive medium by using the discontinuous Galerkin (DG) method to solve the coupled time-domain Maxwell's equations and polarization equation. We define a new and sharpened total energy function for the Cole-Cole model, which better describes the behaviors of the energy than what is available in the current literature. A major theme in the time-domain numerical modeling of this problem has been tackling the difficulty of handling the nonlocal term involved in the time-domain polarization equation. Based on the diffusive representation and the quadrature formula, we derive an approximate system, where the convolution kernel is replaced by a finite number of auxiliary variables that satisfy local-in-time ordinary differential equations. To ensure the resulted approximate system is stable, a nonlinear constrained optimization numerical scheme is established to determine the quadrature coefficients. By a special choice of the numerical fluxes and projections, we obtain for the constant coefficient case an optimal-order convergence result for the semi-discrete DG scheme. The temporal discretization is achieved by the standard two-step backward difference formula and a fast algorithm with linear complexity is constructed. Numerical examples are provided for demonstrating the efficiency of the proposed algorithm, validating the theoretical results and illustrating the behaviors of the energy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset