An Efficient Multi-Domain Framework for Image-to-Image Translation
Existing approaches have been proposed to tackle unsupervised image-to-image translation in recent years. However, they mainly focus on one-to-one mappings, making it difficult to handle more general and practical problems such as multi-domain translations. To address issues like large cost of training time and resources in translation between any number of domains, we propose a general framework called multi-domain translator (MDT), which is extended from bi-directional image-to-image translation. MDT is designed to have only one domain-shared encoder for the consideration of efficiency, together with several domain-specified decoders to transform an image into multiple domains without knowing the input domain label. Moreover, we propose to employ two constraints, namely reconstruction loss and identity loss to further improve the generation. Experiments are conducted on different databases for several multi-domain translation tasks. Both qualitative and quantitative results demonstrate the effectiveness and efficiency performed by the proposed MDT against the state-of-the-art models.
READ FULL TEXT