An efficient Quasi-Newton method for nonlinear inverse problems via learned singular values

12/14/2020
by   Danny Smyl, et al.
12

Solving complex optimization problems in engineering and the physical sciences requires repetitive computation of multi-dimensional function derivatives. Commonly, this requires computationally-demanding numerical differentiation such as perturbation techniques, which ultimately limits the use for time-sensitive applications. In particular, in nonlinear inverse problems Gauss-Newton methods are used that require iterative updates to be computed from the Jacobian. Computationally more efficient alternatives are Quasi-Newton methods, where the repeated computation of the Jacobian is replaced by an approximate update. Here we present a highly efficient data-driven Quasi-Newton method applicable to nonlinear inverse problems. We achieve this, by using the singular value decomposition and learning a mapping from model outputs to the singular values to compute the updated Jacobian. This enables a speed-up expected of Quasi-Newton methods without accumulating roundoff errors, enabling time-critical applications and allowing for flexible incorporation of prior knowledge necessary to solve ill-posed problems. We present results for the highly non-linear inverse problem of electrical impedance tomography with experimental data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro