An Empirical Experiment on Deep Learning Models for Predicting Traffic Data

by   Hyunwook Lee, et al.

To tackle ever-increasing city traffic congestion problems, researchers have proposed deep learning models to aid decision-makers in the traffic control domain. Although the proposed models have been remarkably improved in recent years, there are still questions that need to be answered before deploying models. For example, it is difficult to figure out which models provide state-of-the-art performance, as recently proposed models have often been evaluated with different datasets and experiment environments. It is also difficult to determine which models would work when traffic conditions change abruptly (e.g., rush hour). In this work, we conduct two experiments to answer the two questions. In the first experiment, we conduct an experiment with the state-of-the-art models and the identical public datasets to compare model performance under a consistent experiment environment. We then extract a set of temporal regions in the datasets, whose speeds change abruptly and use these regions to explore model performance with difficult intervals. The experiment results indicate that Graph-WaveNet and GMAN show better performance in general. We also find that prediction models tend to have varying performances with data and intervals, which calls for in-depth analysis of models on difficult intervals for real-world deployment.


page 1

page 4

page 5


Robustness of 3D Deep Learning in an Adversarial Setting

Understanding the spatial arrangement and nature of real-world objects i...

Unboxing the graph: Neural Relational Inference for Mobility Prediction

Predicting the supply and demand of transport systems is vital for effic...

Learning Prediction Intervals for Model Performance

Understanding model performance on unlabeled data is a fundamental chall...

GeneraLight: Improving Environment Generalization of Traffic Signal Control via Meta Reinforcement Learning

The heavy traffic congestion problem has always been a concern for moder...

Automatically Classifying Emotions based on Text: A Comparative Exploration of Different Datasets

Emotion Classification based on text is a task with many applications wh...

CAN: Revisiting Feature Co-Action for Click-Through Rate Prediction

Inspired by the success of deep learning, recent industrial Click-Throug...

Please sign up or login with your details

Forgot password? Click here to reset