An End-to-End Network for Co-Saliency Detection in One Single Image

10/25/2019
by   Yuanhao Yue, et al.
24

As a common visual problem, co-saliency detection within a single image does not attract enough attention and yet has not been well addressed. Existing methods often follow a bottom-up strategy to infer co-saliency in an image, where salient regions are firstly detected using visual primitives such as color and shape, and then grouped and merged into a co-saliency map. However, co-saliency is intrinsically perceived in a complex manner with bottom-up and top-down strategies combined in human vision. To deal with this problem, a novel end-to-end trainable network is proposed in this paper, which includes a backbone net and two branch nets. The backbone net uses ground-truth masks as top-down guidance for saliency prediction, while the two branch nets construct triplet proposals for feature organization and clustering, which drives the network to be sensitive to co-salient regions in a bottom-up way. To evaluate the proposed method, we construct a new dataset of 2,019 nature images with co-saliency in each image. Experimental results show that the proposed method achieves a state-of-the-art accuracy with a running speed of 28fps.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro