An Ensemble method for Content Selection for Data-to-text Systems

06/09/2015
by   Dimitra Gkatzia, et al.
0

We present a novel approach for automatic report generation from time-series data, in the context of student feedback generation. Our proposed methodology treats content selection as a multi-label classification (MLC) problem, which takes as input time-series data (students' learning data) and outputs a summary of these data (feedback). Unlike previous work, this method considers all data simultaneously using ensembles of classifiers, and therefore, it achieves higher accuracy and F- score compared to meaningful baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro