An Evaluation of Information Sharing Parking Guidance Policies Using a Bayesian Approach
Real-time parking occupancy information is critical for a parking management system to facilitate drivers to park more efficiently. Recent advances in connected and automated vehicle technologies enable sensor-equipped cars (probe cars) to detect and broadcast available parking spaces when driving through parking lots. In this paper, we evaluate the impact of market penetration of probe cars on the system performance, and investigate different parking guidance policies to improve the data acquisition process. We adopt a simulation-based approach to impose four policies on an off- street parking lot influencing the behavior of probe cars to park in assigned parking spaces. This in turn effects the scanning route and the parking space occupancy estimations. The last policy we propose is a near-optimal guidance strategy that maximizes the information gain of posteriors. The results suggest that an efficient information gathering policy can compensate for low penetration of connected and automated vehicles. We also highlight the policy trade-off that occur while attempting to maximize information gain through explorations and improve assignment accuracy through exploitations. Our results can assist urban policy makers in designing and managing smart parking systems.
READ FULL TEXT