An Evaluation of Three Distance Measurement Technologies for Flying Light Specks
This study evaluates the accuracy of three different types of time-of-flight sensors to measure distance. We envision the possible use of these sensors to localize swarms of flying light specks (FLSs) to illuminate objects and avatars of a metaverse. An FLS is a miniature-sized drone configured with RGB light sources. It is unable to illuminate a point cloud by itself. However, the inter-FLS relationship effect of an organizational framework will compensate for the simplicity of each individual FLS, enabling a swarm of cooperating FLSs to illuminate complex shapes and render haptic interactions. Distance between FLSs is an important criterion of the inter-FLS relationship. We consider sensors that use radio frequency (UWB), infrared light (IR), and sound (ultrasonic) to quantify this metric. Obtained results show only one sensor is able to measure distances as small as 1 cm with a high accuracy. A sensor may require a calibration process that impacts its accuracy in measuring distance.
READ FULL TEXT