An O(1)-Approximation Algorithm for Dynamic Weighted Vertex Cover with Soft Capacity

02/15/2018
by   Hao-Ting Wei, et al.
0

This study considers the (soft) capacitated vertex cover problem in a dynamic setting. This problem generalizes the dynamic model of the vertex cover problem, which has been intensively studied in recent years. Given a dynamically changing vertex-weighted graph G=(V,E), which allows edge insertions and edge deletions, the goal is to design a data structure that maintains an approximate minimum vertex cover while satisfying the capacity constraint of each vertex. That is, when picking a copy of a vertex v in the cover, the number of v's incident edges covered by the copy is up to a given capacity of v. We extend Bhattacharya et al.'s work [SODA'15 and ICALP'15] to obtain a deterministic primal-dual algorithm for maintaining a constant-factor approximate minimum capacitated vertex cover with O( n / ϵ) amortized update time, where n is the number of vertices in the graph. The algorithm can be extended to (1) a more general model in which each edge is associated with a nonuniform and unsplittable demand, and (2) the more general capacitated set cover problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro