An Optimal Algorithm for Bandit and Zero-Order Convex Optimization with Two-Point Feedback

07/31/2015
by   Ohad Shamir, et al.
0

We consider the closely related problems of bandit convex optimization with two-point feedback, and zero-order stochastic convex optimization with two function evaluations per round. We provide a simple algorithm and analysis which is optimal for convex Lipschitz functions. This improves on dujww13, which only provides an optimal result for smooth functions; Moreover, the algorithm and analysis are simpler, and readily extend to non-Euclidean problems. The algorithm is based on a small but surprisingly powerful modification of the gradient estimator.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset