An STDP-Based Supervised Learning Algorithm for Spiking Neural Networks

03/07/2022
by   Zhanhao Hu, et al.
0

Compared with rate-based artificial neural networks, Spiking Neural Networks (SNN) provide a more biological plausible model for the brain. But how they perform supervised learning remains elusive. Inspired by recent works of Bengio et al., we propose a supervised learning algorithm based on Spike-Timing Dependent Plasticity (STDP) for a hierarchical SNN consisting of Leaky Integrate-and-fire (LIF) neurons. A time window is designed for the presynaptic neuron and only the spikes in this window take part in the STDP updating process. The model is trained on the MNIST dataset. The classification accuracy approach that of a Multilayer Perceptron (MLP) with similar architecture trained by the standard back-propagation algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset