Analysis of DNN Speech Signal Enhancement for Robust Speaker Recognition

11/19/2018
by   Ondrej Novotny, et al.
0

In this work, we present an analysis of a DNN-based autoencoder for speech enhancement, dereverberation and denoising. The target application is a robust speaker verification (SV) system. We start our approach by carefully designing a data augmentation process to cover wide range of acoustic conditions and obtain rich training data for various components of our SV system. We augment several well-known databases used in SV with artificially noised and reverberated data and we use them to train a denoising autoencoder (mapping noisy and reverberated speech to its clean version) as well as an x-vector extractor which is currently considered as state-of-the-art in SV. Later, we use the autoencoder as a preprocessing step for text-independent SV system. We compare results achieved with autoencoder enhancement, multi-condition PLDA training and their simultaneous use. We present a detailed analysis with various conditions of NIST SRE 2010, 2016, PRISM and with re-transmitted data. We conclude that the proposed preprocessing can significantly improve both i-vector and x-vector baselines and that this technique can be used to build a robust SV system for various target domains.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro