Analyzing Knowledge Transfer in Deep Q-Networks for Autonomously Handling Multiple Intersections

05/02/2017
by   David Isele, et al.
0

We analyze how the knowledge to autonomously handle one type of intersection, represented as a Deep Q-Network, translates to other types of intersections (tasks). We view intersection handling as a deep reinforcement learning problem, which approximates the state action Q function as a deep neural network. Using a traffic simulator, we show that directly copying a network trained for one type of intersection to another type of intersection decreases the success rate. We also show that when a network that is pre-trained on Task A and then is fine-tuned on a Task B, the resulting network not only performs better on the Task B than an network exclusively trained on Task A, but also retained knowledge on the Task A. Finally, we examine a lifelong learning setting, where we train a single network on five different types of intersections sequentially and show that the resulting network exhibited catastrophic forgetting of knowledge on previous tasks. This result suggests a need for a long-term memory component to preserve knowledge.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro