Analyzing the State of Computer Science Research with the DBLP Discovery Dataset
The number of scientific publications continues to rise exponentially, especially in Computer Science (CS). However, current solutions to analyze those publications restrict access behind a paywall, offer no features for visual analysis, limit access to their data, only focus on niches or sub-fields, and/or are not flexible and modular enough to be transferred to other datasets. In this thesis, we conduct a scientometric analysis to uncover the implicit patterns hidden in CS metadata and to determine the state of CS research. Specifically, we investigate trends of the quantity, impact, and topics for authors, venues, document types (conferences vs. journals), and fields of study (compared to, e.g., medicine). To achieve this we introduce the CS-Insights system, an interactive web application to analyze CS publications with various dashboards, filters, and visualizations. The data underlying this system is the DBLP Discovery Dataset (D3), which contains metadata from 5 million CS publications. Both D3 and CS-Insights are open-access, and CS-Insights can be easily adapted to other datasets in the future. The most interesting findings of our scientometric analysis include that i) there has been a stark increase in publications, authors, and venues in the last two decades, ii) many authors only recently joined the field, iii) the most cited authors and venues focus on computer vision and pattern recognition, while the most productive prefer engineering-related topics, iv) the preference of researchers to publish in conferences over journals dwindles, v) on average, journal articles receive twice as many citations compared to conference papers, but the contrast is much smaller for the most cited conferences and journals, and vi) journals also get more citations in all other investigated fields of study, while only CS and engineering publish more in conferences than journals.
READ FULL TEXT