Applying Cyclical Learning Rate to Neural Machine Translation
In training deep learning networks, the optimizer and related learning rate are often used without much thought or with minimal tuning, even though it is crucial in ensuring a fast convergence to a good quality minimum of the loss function that can also generalize well on the test dataset. Drawing inspiration from the successful application of cyclical learning rate policy for computer vision related convolutional networks and datasets, we explore how cyclical learning rate can be applied to train transformer-based neural networks for neural machine translation. From our carefully designed experiments, we show that the choice of optimizers and the associated cyclical learning rate policy can have a significant impact on the performance. In addition, we establish guidelines when applying cyclical learning rates to neural machine translation tasks. Thus with our work, we hope to raise awareness of the importance of selecting the right optimizers and the accompanying learning rate policy, at the same time, encourage further research into easy-to-use learning rate policies.
READ FULL TEXT