Approximate Simulation for Template-Based Whole-Body Control

06/17/2020
by   Vince Kurtz, et al.
0

Reduced-order template models are widely used to control high degree-of-freedom legged robots, but existing methods for template-based whole-body control rely heavily on heuristics and often suffer from robustness issues. In this letter, we propose a template-based whole-body control method grounded in the formal framework of approximate simulation. Our central contribution is to demonstrate how the Hamiltonian structure of rigid-body dynamics can be exploited to establish approximate simulation for a high-dimensional nonlinear system. The resulting controller is passive, more robust to push disturbances, uneven terrain, and modeling errors than standard QP-based methods, and naturally enables high center of mass walking. Our theoretical results are supported by simulation experiments with a 30 degree-of-freedom Valkyrie humanoid model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro