Arbitrary high-order linear structure-preserving schemes for the regularized long-wave equation
In this paper, a class of arbitrarily high-order linear momentum-preserving and energy-preserving schemes are proposed, respectively, for solving the regularized long-wave equation. For the momentum-preserving scheme, our key ideas mainly follow the extrapolation/prediction-correction technique and symplectic Runge-Kutta (RK) methods in time combined with the standard Fourier pseudo-spectral method in space. We show that it is uniquely solvable, unconditionally stable and can exactly preserve the momentum of the system. Subsequently, based on the energy quadratization approach and the analogous linearized idea used in the construction of the linear momentum-preserving scheme, the energy-preserving scheme is presented and it is proven to preserve both the discrete mass and quadratic energy. Numerical results are addressed to demonstrate the accuracy and efficiency of the schemes.
READ FULL TEXT