Are All Experts Equally Good? A Study of Analyst Earnings Estimates
We investigate whether experts possess differential expertise when making predictions. We note that this would make it possible to aggregate multiple predictions into a result that is more accurate than their consensus average, and that the improvement prospects grow with the amount of differentiation. Turning this argument on its head, we show how differentiation can be measured by how much weighted aggregation improves on simple averaging. Taking stock-market analysts as experts in their domain, we do a retrospective study using historical quarterly earnings forecasts and actual results for large publicly traded companies. We use it to shed new light on the Sinha et al. (1997) result, showing that analysts indeed possess individual expertise, but that their differentiation is modest. On the other hand, they have significant individual bias. Together, these enable a 20 consensus average.
READ FULL TEXT