ASSERT: Anti-Spoofing with Squeeze-Excitation and Residual neTworks

04/01/2019
by   Cheng-I Lai, et al.
0

We present JHU's system submission to the ASVspoof 2019 Challenge: Anti-Spoofing with Squeeze-Excitation and Residual neTworks (ASSERT). Anti-spoofing has gathered more and more attention since the inauguration of the ASVspoof Challenges, and ASVspoof 2019 dedicates to address attacks from all three major types: text-to-speech, voice conversion, and replay. Built upon previous research work on Deep Neural Network (DNN), ASSERT is a pipeline for DNN-based approach to anti-spoofing. ASSERT has four components: feature engineering, DNN models, network optimization and system combination, where the DNN models are variants of squeeze-excitation and residual networks. We conducted an ablation study of the effectiveness of each component on the ASVspoof 2019 corpus, and experimental results showed that ASSERT obtained more than 93 sub-challenges in ASVspooof 2019, ranking ASSERT one of the top performing systems. Code and pretrained models will be made publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset