Asymptotic equivalence for nonparametric regression with dependent errors: Gauss-Markov processes

04/19/2021
by   Holger Dette, et al.
0

For the class of Gauss-Markov processes we study the problem of asymptotic equivalence of the nonparametric regression model with errors given by the increments of the process and the continuous time model, where a whole path of a sum of a deterministic signal and the Gauss-Markov process can be observed. In particular we provide sufficient conditions such that asymptotic equivalence of the two models holds for functions from a given class, and we verify these for the special cases of Sobolev ellipsoids and Hölder classes with smoothness index > 1/2 under mild assumptions on the Gauss-Markov process at hand. To derive these results, we develop an explicit characterization of the reproducing kernel Hilbert space associated with the Gauss-Markov process, that hinges on a characterization of such processes by a property of the corresponding covariance kernel introduced by Doob. In order to demonstrate that the given assumptions on the Gauss-Markov process are in some sense sharp we also show that asymptotic equivalence fails to hold for the special case of Brownian bridge. Our results demonstrate that the well-known asymptotic equivalence of the Gaussian white noise model and the nonparametric regression model with independent standard normal distributed errors can be extended to a broad class of models with dependent data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro