Asymptotic theory for regression models with fractional local to unity root errors

02/22/2020
by   Farzad Sabzikar, et al.
0

This paper develops the asymptotic theory for parametric and nonparametric regression models when the errors have a fractional local to unity root (FLUR) model structure. FLUR models are stationary time series with semi-long range dependence property in the sense that their covariance function resembles that of a long memory model for moderate lags but eventually diminishes exponentially fast according to the presence of a decay factor governed by a noncentrality parameter. When this parameter is sample size dependent, the asymptotic normality for these regression models admit a wide range of stochastic processes with behavior that includes long, semi-long, and short memory processes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro