ATSO: Asynchronous Teacher-Student Optimizationfor Semi-Supervised Medical Image Segmentation

06/24/2020
by   Xinyue Huo, et al.
0

In medical image analysis, semi-supervised learning is an effective method to extract knowledge from a small amount of labeled data and a large amount of unlabeled data. This paper focuses on a popular pipeline known as self learning, and points out a weakness namedlazy learningthat refers to the difficulty for a model to learn from the pseudo labels generated by itself. To alleviate this issue, we proposeATSO, anasynchronousversion of teacher-student optimization. ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset. We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings. With slight modification, ATSO transfers well to natural image segmentation for autonomous driving data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset