Attention-Guided Lightweight Network for Real-Time Segmentation of Robotic Surgical Instruments

10/24/2019
by   Zhen-Liang Ni, et al.
11

Real-time segmentation of surgical instruments plays a crucial role in robot-assisted surgery. However, real-time segmentation of surgical instruments using current deep learning models is still a challenging task due to the high computational costs and slow inference speed. In this paper, an attention-guided lightweight network (LWANet), is proposed to segment surgical instruments in real-time. LWANet adopts the encoder-decoder architecture, where the encoder is the lightweight network MobileNetV2 and the decoder consists of depth-wise separable convolution, attention fusion block, and transposed convolution. Depth-wise separable convolution is used as the basic unit to construct the decoder, which can reduce the model size and computational costs. Attention fusion block captures global context and encodes semantic dependencies between channels to emphasize target regions, contributing to locating the surgical instrument. Transposed convolution is performed to upsample the feature map for acquiring refined edges. LWANet can segment surgical instruments in real-time, taking few computational costs. Based on 960*544 inputs, its inference speed can reach 39 fps with only 3.39 GFLOPs. Also, it has a small model size and the number of parameters is only 2.06 M. The proposed network is evaluated on two datasets. It achieves state-of-the-art performance 94.10 with 4.10

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset