Augmenting Neural Nets with Symbolic Synthesis: Applications to Few-Shot Learning

07/12/2019
by   Adithya Murali, et al.
8

We propose symbolic learning as extensions to standard inductive learning models such as neural nets as a means to solve few shot learning problems. We device a class of visual discrimination puzzles that calls for recognizing objects and object relationships as well learning higher-level concepts from very few images. We propose a two-phase learning framework that combines models learned from large data sets using neural nets and symbolic first-order logic formulas learned from a few shot learning instance. We develop first-order logic synthesis techniques for discriminating images by using symbolic search and logic constraint solvers. By augmenting neural nets with them, we develop and evaluate a tool that can solve few shot visual discrimination puzzles with interpretable concepts.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro