Autocorrelations Decay in Texts and Applicability Limits of Language Models

05/11/2023
by   Nikolay Mikhaylovskiy, et al.
0

We show that the laws of autocorrelations decay in texts are closely related to applicability limits of language models. Using distributional semantics we empirically demonstrate that autocorrelations of words in texts decay according to a power law. We show that distributional semantics provides coherent autocorrelations decay exponents for texts translated to multiple languages. The autocorrelations decay in generated texts is quantitatively and often qualitatively different from the literary texts. We conclude that language models exhibiting Markov behavior, including large autoregressive language models, may have limitations when applied to long texts, whether analysis or generation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro