Autoencoder Feature Selector

10/23/2017
by   Kai Han, et al.
0

High-dimensional data in many areas such as computer vision and machine learning brings in computational and analytical difficulty. Feature selection which select a subset of features from original ones has been proven to be effective and efficient to deal with high-dimensional data. In this paper, we propose a novel AutoEncoder Feature Selector (AEFS) for unsupervised feature selection. AEFS is based on the autoencoder and the group lasso regularization. Compared to traditional feature selection methods, AEFS can select the most important features in spite of nonlinear and complex correlation among features. It can be viewed as a nonlinear extension of the linear method regularized self-representation (RSR) for unsupervised feature selection. In order to deal with noise and corruption, we also propose robust AEFS. An efficient iterative algorithm is designed for model optimization and experimental results verify the effectiveness and superiority of the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset