Automatically Reinforcing a Game AI

07/27/2016
by   David L. St-Pierre, et al.
1

A recent research trend in Artificial Intelligence (AI) is the combination of several programs into one single, stronger, program; this is termed portfolio methods. We here investigate the application of such methods to Game Playing Programs (GPPs). In addition, we consider the case in which only one GPP is available - by decomposing this single GPP into several ones through the use of parameters or even simply random seeds. These portfolio methods are trained in a learning phase. We propose two different offline approaches. The simplest one, BestArm, is a straightforward optimization of seeds or parame- ters; it performs quite well against the original GPP, but performs poorly against an opponent which repeats games and learns. The second one, namely Nash-portfolio, performs similarly in a "one game" test, and is much more robust against an opponent who learns. We also propose an online learning portfolio, which tests several of the GPP repeatedly and progressively switches to the best one - using a bandit algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset