Backward difference formula: The energy technique for subdiffusion equation

10/25/2020
by   Minghua Chen, et al.
0

Based on the equivalence of A-stability and G-stability, the energy technique of the six-step BDF method for the heat equation has been discussed in [Akrivis, Chen, Yu, Zhou, Math. Comp., Revised]. Unfortunately, this theory is hard to extend the time-fractional PDEs. In this work, we consider three types of subdiffusion models, namely single-term, multi-term and distributed order fractional diffusion equations. We present a novel and concise stability analysis of time stepping schemes generated by k-step backward difference formula (BDFk), for approximately solving the subdiffusion equation. The analysis mainly relies on the energy technique by applying Grenander-Szegö theorem. This kind of argument has been widely used to confirm the stability of various A-stable schemes (e.g., k=1,2). However, it is not an easy task for the higher-order BDF methods, due to the loss the A-stability. The core object of this paper is to fill in this gap.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro