Bayesian Optimization for Synthetic Gene Design

05/07/2015
by   Javier Gonzalez, et al.
0

We address the problem of synthetic gene design using Bayesian optimization. The main issue when designing a gene is that the design space is defined in terms of long strings of characters of different lengths, which renders the optimization intractable. We propose a three-step approach to deal with this issue. First, we use a Gaussian process model to emulate the behavior of the cell. As inputs of the model, we use a set of biologically meaningful gene features, which allows us to define optimal gene designs rules. Based on the model outputs we define a multi-task acquisition function to optimize simultaneously severals aspects of interest. Finally, we define an evaluation function, which allow us to rank sets of candidate gene sequences that are coherent with the optimal design strategy. We illustrate the performance of this approach in a real gene design experiment with mammalian cells.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset