Benchmarking Robot Manipulation with the Rubik's Cube

by   Boling Yang, et al.

Benchmarks for robot manipulation are crucial to measuring progress in the field, yet there are few benchmarks that demonstrate critical manipulation skills, possess standardized metrics, and can be attempted by a wide array of robot platforms. To address a lack of such benchmarks, we propose Rubik's cube manipulation as a benchmark to measure simultaneous performance of precise manipulation and sequential manipulation. The sub-structure of the Rubik's cube demands precise positioning of the robot's end effectors, while its highly reconfigurable nature enables tasks that require the robot to manage pose uncertainty throughout long sequences of actions. We present a protocol for quantitatively measuring both the accuracy and speed of Rubik's cube manipulation. This protocol can be attempted by any general-purpose manipulator, and only requires a standard 3x3 Rubik's cube and a flat surface upon which the Rubik's cube initially rests (e.g. a table). We demonstrate this protocol for two distinct baseline approaches on a PR2 robot. The first baseline provides a fundamental approach for pose-based Rubik's cube manipulation. The second baseline demonstrates the benchmark's ability to quantify improved performance by the system, particularly that resulting from the integration of pre-touch sensing. To demonstrate the benchmark's applicability to other robot platforms and algorithmic approaches, we present the functional blocks required to enable the HERB robot to manipulate the Rubik's cube via push-grasping.


page 1

page 2

page 5


Jigsaw-based Benchmarking for Learning Robotic Manipulation

Benchmarking provides experimental evidence of the scientific baseline t...

Learning Pregrasp Manipulation of Objects from Ungraspable Poses

In robotic grasping, objects are often occluded in ungraspable configura...

Learning a Generative Transition Model for Uncertainty-Aware Robotic Manipulation

Robot learning of real-world manipulation tasks remains challenging and ...

Contact-less manipulation of millimeter-scale objects via ultrasonic levitation

Although general purpose robotic manipulators are becoming more capable ...

LEMMA: Learning Language-Conditioned Multi-Robot Manipulation

Complex manipulation tasks often require robots with complementary capab...

Benchmarking In-Hand Manipulation

The purpose of this benchmark is to evaluate the planning and control as...

ManiSkill2: A Unified Benchmark for Generalizable Manipulation Skills

Generalizable manipulation skills, which can be composed to tackle long-...

Please sign up or login with your details

Forgot password? Click here to reset