Beyond Least-Squares: Fast Rates for Regularized Empirical Risk Minimization through Self-Concordance

02/08/2019
by   Ulysse Marteau-Ferey, et al.
0

We consider learning methods based on the regularization of a convex empirical risk by a squared Hilbertian norm, a setting that includes linear predictors and non-linear predictors through positive-definite kernels. In order to go beyond the generic analysis leading to convergence rates of the excess risk as O(1/√(n)) from n observations, we assume that the individual losses are self-concordant, that is, their third-order derivatives are bounded by their second-order derivatives. This setting includes least-squares, as well as all generalized linear models such as logistic and softmax regression. For this class of losses, we provide a bias-variance decomposition and show that the assumptions commonly made in least-squares regression, such as the source and capacity conditions, can be adapted to obtain fast non-asymptotic rates of convergence by improving the bias terms, the variance terms or both.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset