Beyond Semantic Image Segmentation : Exploring Efficient Inference in Video

07/01/2015
by   Subarna Tripathi, et al.
0

We explore the efficiency of the CRF inference module beyond image level semantic segmentation. The key idea is to combine the best of two worlds of semantic co-labeling and exploiting more expressive models. Similar to [Alvarez14] our formulation enables us perform inference over ten thousand images within seconds. On the other hand, it can handle higher-order clique potentials similar to [vineet2014] in terms of region-level label consistency and context in terms of co-occurrences. We follow the mean-field updates for higher order potentials similar to [vineet2014] and extend the spatial smoothness and appearance kernels [DenseCRF13] to address video data inspired by [Alvarez14]; thus making the system amenable to perform video semantic segmentation most effectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset