BGrowth: an efficient approach for the segmentation of vertebral compression fractures in magnetic resonance imaging

06/20/2019
by   Jonathan S. Ramos, et al.
2

Segmentation of medical images is a critical issue: several process of analysis and classification rely on this segmentation. With the growing number of people presenting back pain and problems related to it, the automatic or semi-automatic segmentation of fractured vertebral bodies became a challenging task. In general, those fractures present several regions with non-homogeneous intensities and the dark regions are quite similar to the structures nearby. Aimed at overriding this challenge, in this paper we present a semi-automatic segmentation method, called Balanced Growth (BGrowth). The experimental results on a dataset with 102 crushed and 89 normal vertebrae show that our approach significantly outperforms well-known methods from the literature. We have achieved an accuracy up to 95 performance, that is equivalent to the state-of-the-artmethods. Moreover, BGrowth presents the best results even with a rough (sloppy) manual annotation (seed points).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro