Bias and Excess Variance in Election Polling: A Not-So-Hidden Markov Model
With historic misses in the 2016 and 2020 US Presidential elections, interest in measuring polling errors has increased. The most common method for measuring directional errors and non-sampling excess variability during a postmortem for an election is by assessing the difference between the poll result and election result for polls conducted within a few days of the day of the election. Analyzing such polling error data is notoriously difficult with typical models being extremely sensitive to the time between the poll and the election. We leverage hidden Markov models traditionally used for election forecasting to flexibly capture time-varying preferences and treat the election result as a peak at the typically hidden Markovian process. Our results are much less sensitive to the choice of time window, avoid conflating shifting preferences with polling error, and are more interpretable despite a highly flexible model. We demonstrate these results with data on polls from the 2004 through 2020 US Presidential elections, concluding that previously reported estimates of pro-Democratic bias in 2016 and 2020 were too small, while excess variability estimates were too large.
READ FULL TEXT