BiSPARCs for Unsourced Random Access in Massive MIMO

04/27/2023
by   Patrick Agostini, et al.
0

This paper considers the massive MIMO unsourced random access problem in a quasi-static Rayleigh fading setting. The proposed coding scheme is based on a concatenation of a "conventional" channel code (such as, e.g., LDPC) serving as an outer code, and a sparse regression code (SPARC) serving as an inner code. The scheme combines channel estimation, single-user decoding, and successive interference cancellation in a novel way. The receiver performs joint channel estimation and SPARC decoding via an instance of a bilinear generalized approximate message passing (BiGAMP) based algorithm, which leverages the intrinsic bilinear structure that arises in the considered communication regime. The detection step is followed by a per-user soft-input-soft-output (SISO) decoding of the outer channel code in combination with a successive interference cancellation (SIC) step. We show via numerical simulation that the resulting scheme achieves stat-of-the-art performance in the massive connectivity setting, while attaining comparatively low implementation complexity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro