Block clustering of Binary Data with Gaussian Co-variables
The simultaneous grouping of rows and columns is an important technique that is increasingly used in large-scale data analysis. In this paper, we present a novel co-clustering method using co-variables in its construction. It is based on a latent block model taking into account the problem of grouping variables and clustering individuals by integrating information given by sets of co-variables. Numerical experiments on simulated data sets and an application on real genetic data highlight the interest of this approach.
READ FULL TEXT