Boosting Independent Component Analysis
Independent component analysis is intended to recover the unknown components as independent as possible from their linear mixtures. This technique has been widely used in many fields, such as data analysis, signal processing, and machine learning. In this paper, we present a novel boosting-based algorithm for independent component analysis. Our algorithm fills the gap in the nonparametric independent component analysis by introducing boosting to maximum likelihood estimation. A variety of experiments validate its performance compared with many of the presently known algorithms.
READ FULL TEXT