Boosting the Performance of Object Tracking with a Half-Precision Particle Filter on GPU

08/01/2023
by   Gabin Schieffer, et al.
0

High-performance GPU-accelerated particle filter methods are critical for object detection applications, ranging from autonomous driving, robot localization, to time-series prediction. In this work, we investigate the design, development and optimization of particle-filter using half-precision on CUDA cores and compare their performance and accuracy with single- and double-precision baselines on Nvidia V100, A100, A40 and T4 GPUs. To mitigate numerical instability and precision losses, we introduce algorithmic changes in the particle filters. Using half-precision leads to a performance improvement of 1.5-2x and 2.5-4.6x with respect to single- and double-precision baselines respectively, at the cost of a relatively small loss of accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset