Bootstrapping incremental dialogue systems from minimal data: the generalisation power of dialogue grammars
We investigate an end-to-end method for automatically inducing task-based dialogue systems from small amounts of unannotated dialogue data. It combines an incremental semantic grammar - Dynamic Syntax and Type Theory with Records (DS-TTR) - with Reinforcement Learning (RL), where language generation and dialogue management are a joint decision problem. The systems thus produced are incremental: dialogues are processed word-by-word, shown previously to be essential in supporting natural, spontaneous dialogue. We hypothesised that the rich linguistic knowledge within the grammar should enable a combinatorially large number of dialogue variations to be processed, even when trained on very few dialogues. Our experiments show that our model can process 74 Facebook AI bAbI dataset even when trained on only 0.13 dialogues). It can in addition process 65 systematically adding incremental dialogue phenomena such as restarts and self-corrections to bAbI. We compare our model with a state-of-the-art retrieval model, MemN2N. We find that, in terms of semantic accuracy, MemN2N shows very poor robustness to the bAbI+ transformations even when trained on the full bAbI dataset.
READ FULL TEXT