Boundary Attack++: Query-Efficient Decision-Based Adversarial Attack

04/03/2019
by   Jianbo Chen, et al.
6

Decision-based adversarial attack studies the generation of adversarial examples that solely rely on output labels of a target model. In this paper, decision-based adversarial attack was formulated as an optimization problem. Motivated by zeroth-order optimization, we develop Boundary Attack++, a family of algorithms based on a novel estimate of gradient direction using binary information at the decision boundary. By switching between two types of projection operators, our algorithms are capable of optimizing L_2 and L_∞ distances respectively. Experiments show Boundary Attack++ requires significantly fewer model queries than Boundary Attack. We also show our algorithm achieves superior performance compared to state-of-the-art white-box algorithms in attacking adversarially trained models on MNIST.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro