Bounds on the Twin-Width of Product Graphs
Twin-width is a graph width parameter recently introduced by Bonnet, Kim, Thomassé Watrigant. Given two graphs G and H and a graph product ⋆, we address the question: is the twin-width of G⋆ H bounded by a function of the twin-widths of G and H and their maximum degrees? It is known that a bound of this type holds for strong products (Bonnet, Geniet, Kim, Thomassé Watrigant; SODA 2021). We show that bounds of the same form hold for Cartesian, tensor/direct, rooted, replacement, and zig-zag products. For the lexicographical product we prove that the twin-width of the product of two graphs is exactly the maximum of the twin-widths of the individual graphs. In contrast, for the modular product we show that no bound can hold. In addition, we provide examples showing many of our bounds are tight, and give improved bounds for certain classes of graphs.
READ FULL TEXT